結(jié)型器件:基于PN結(jié)、肖特基結(jié)或其延伸結(jié)構(gòu)的兩端器件,主要基于光生伏特效應(yīng)實(shí)現(xiàn)光電信號(hào)轉(zhuǎn)換,這類器件結(jié)構(gòu)簡單,光響應(yīng)度強(qiáng),是最為常見的光電探測器構(gòu)型。
單溝道2D-FET:該器件為三端器件,因此可以獲得材料基本的輸運(yùn)特性,場調(diào)控特性。相比于兩端器件,其柵控端也帶來了更大的調(diào)控自由度。FET結(jié)構(gòu)是比較普適的器件結(jié)構(gòu)
異質(zhì)結(jié)二維場效應(yīng)晶體管(2D-FET):本結(jié)構(gòu)與單層溝道場效應(yīng)晶體管(FET)的關(guān)鍵區(qū)別在于其功能層由兩種或以上的二維材料構(gòu)成的結(jié)型結(jié)構(gòu)。通過柵極電壓,可以同時(shí)調(diào)節(jié)結(jié)區(qū)的勢壘高度和溝道中的載流子濃度。
多柵設(shè)計(jì):鑒于二維材料所具有的超薄溝道和卓越的場效應(yīng)控制能力,可以設(shè)計(jì)出多種柵極結(jié)構(gòu)以進(jìn)一步優(yōu)化器件性能。比如,上下雙柵結(jié)構(gòu),局域柵結(jié)構(gòu)、分立柵結(jié)構(gòu)。
浮柵設(shè)計(jì):浮柵結(jié)構(gòu)最初被應(yīng)用于NAND存儲(chǔ)器中,以實(shí)現(xiàn)非易失性存儲(chǔ)?;诟沤Y(jié)構(gòu)和二維材料可以實(shí)現(xiàn)的應(yīng)用包括:①光存儲(chǔ):②神經(jīng)形態(tài)計(jì)算:③光邏輯:
垂直溝道設(shè)計(jì):作為一種獨(dú)特的器件設(shè)計(jì),垂直溝道結(jié)構(gòu)充分利用了二維材料的特性。通過巧妙地利用二維材料在厚度方向上的傳輸能力,該設(shè)計(jì)能夠?qū)崿F(xiàn)量子維度的彈道輸運(yùn)現(xiàn)象。
Barristor型器件:也被稱為可變勢壘晶體管,通過柵極電壓控制肖特基勢壘,實(shí)現(xiàn)對電流的開關(guān)控制,其本質(zhì)上是借助了二維材料的量子電容特性。
復(fù)合功能型器件:二維材料的“積木組裝”特性,可以將不同的二維材料器件組合堆疊還能將不同的器件乃至功能模塊組合堆疊。
參考文獻(xiàn):
1. Yang, Y., et al., Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano, 2019. 13(8): p. 8804-8810.2. Krishnamurthi, V., et al., Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors. Adv Mater, 2020. 32(45): p. e2004247.3. Wang, X., et al., Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater., 2015. 27(42): p. 6575-+.4. Xue, H., et al., A MoSe2/WSe2 Heterojunction-Based Photodetector at Telecommunication Wavelengths. Advanced Functional Materials, 2018. 28(47).5. Zong, X., et al., Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci Appl, 2020. 9: p. 114.6. Lu, Q., et al., Low-Noise Mid-Infrared Photodetection in BP/h-BN/Graphene van der Waals Heterojunctions. Materials (Basel), 2019. 12(16).7. Yang, S., et al., Monolithic Interface Contact Engineering to Boost Optoelectronic Performances of 2D Semiconductor Photovoltaic Heterojunctions. Nano Lett., 2020. 20(4): p. 2443-2451.8. Yu, W.J., et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013. 8(12): p. 952-8.9. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS 2. Nat. Nanotechnol., 2013. 8(7): p. 497-501.10. Yang, H., et al., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, 2012. 336(6085): p. 1140-1143.11. Huh, W., et al., Synaptic Barristor Based on Phase-Engineered 2D Heterostructures. Advanced Materials, 2018. 30(35): p. 1801447.12. Mennel, L., et al., Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020. 579(7797): p. 62-66.13. Pan, C., et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nature Electronics, 2020. 3(7): p. 383-390.14. Yan, J., et al., Dual-gated bilayer graphene hot-electron bolometer. Nat Nanotechnol, 2012. 7(7): p. 472-8.15. Choi, D.-H., et al., Engineering performance of barristors by varying the thickness of WS2. Current Applied Physics, 2017. 17(1): p. 11-14.16. Paul, T., et al., A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing. 2D Materials, 2019. 6(4).17. Gong, F., et al., High‐Sensitivity Floating‐Gate Phototransistors Based on WS2 and MoS2. Advanced Functional Materials, 2016. 26(33): p. 6084-6090.18. Nazir, G., et al. Gate Tunable Transport in Graphene/MoS2/(Cr/Au) Vertical Field-Effect Transistors. Nanomaterials, 2018. 8, DOI: 10.3390/nano8010014.19. Vaziri, S., et al., A Graphene-Based Hot Electron Transistor. Nano Letters, 2013. 13(4): p. 1435-1439.20. Britnell, L., et al., Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012. 335(6071): p. 947-950.21. Kim, C.O., et al., High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat Commun, 2014. 5: p. 3249.22. Massicotte, M., et al., Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun., 2016. 7: p. 12174.23. Liao, F., et al., A Dual-Gate MoS2 Photodetector Based on Interface Coupling Effect. Small, 2020. 16(1): p. 1904369.24. Zhou, J., et al., Charge Sampling Photodetector Based on van der Waals Heterostructures. Advanced Optical Materials, 2022. 10(24): p. 2201442.25. Liu, W., et al., Graphene charge-injection photodetectors. Nature Electronics, 2022. 5(5): p. 281-288.26. Yu, J., et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS(2) heterostructure. Sci Adv, 2021. 7(12).27. Seo, S., et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nature Communications, 2018. 9(1): p. 5106.28. Zhu, Y., et al., Non-volatile 2D MoS(2)/black phosphorus heterojunction photodiodes in the near- to mid-infrared region. Nat Commun, 2024. 15(1): p. 6015.29. Ning, H., et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nature Nanotechnology, 2023. 18(5): p. 493-500.30. Shen, T., et al., Electric Field Screening in Gate‐Tunable van der Waals 2D‐Metal/InSe Junctions. Advanced Functional Materials, 2022. 32(47).31. Tong, L., et al., 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 2021. 373(6561): p. 1353-1358.32. Wan, X., et al., A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? npj 2D Mater. and Appl., 2017. 1(1): p. 4.33. Yu, T., et al., Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors. Advanced Materials, 2016. 28(24): p. 4912-4919.34. Son, B., et al., Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption. Nano Letters, 2022. 22(23): p. 9516-9522.